Hermione Gingold and Maurice Chevalier in Gigi (1958) sing "I Remember It Well" |
Studies of human memory often focus on how we remember some experiences but forget others, distinguishing only between ‘successful’ and ‘unsuccessful’ memory. However, as Chevalier and Gingold demonstrate, our memory for successfully remembered events can vary widely in quality, differing in the kinds of detail we can remember and how precise our memory for those details is. In addition to these ‘objective’ measures of how well we remember, our memory for an event can also subjectively feel more or less vivid to us based on our conscious experience of reliving the episode, regardless of how accurate our memory actually is. To date, there has been limited understanding of how such substantial differences in memory accuracy and experience occur.
Example study display of 3 objects presented on a background picture |
In our new paper published in eLife, Franka Richter and Rose Cooper developed a novel behavioural
task that enables a measure of the likelihood that a memory will be remembered to
be separated from measures of both the quality of that memory and the vividness
with which it is experienced. In the task, participants studied visual displays
each consisting of several different everyday objects presented on a background picture of a landscape
or building. The objects varied in three characteristics: their colour (on a
continuous spectrum), orientation (how they were rotated around 360 degrees),
and their location on the background picture.
We tested participants’ memory
for these characteristics by asking them to recreate the colour, orientation,
and location of the objects using dials to change the appearance of the object
in a continuous manner (see video below). By testing how precisely participants were able to
recreate these three characteristics of the objects from memory, we were able
to tease apart the likelihood of remembering from the quality of memory. Before
we asked participants to recreate the objects, we also presented them only with
the background picture and asked them to remember the objects that were
presented on this background and rate how vividly they perceived their memory of
the objects to be. By asking them to rate the vividness of their memory on a
slider from “not vivid” to “very vivid” we obtained a record of how rich the
memory felt to participants.
In the current study, we discovered that specific brain mechanisms underlie these three distinct aspects of memory using a brain imaging technique known as functional magnetic resonance imaging (fMRI). The results of our study demonstrated that the hippocampus, a brain region widely associated with memory retrieval, responded to successfully remembering (in contrast to forgetting) an event, regardless of its quality. That is, the hippocampus indicated whether an object characteristic was remembered no matter how vague this memory was. In contrast, a region towards the back of the brain known as the angular gyrus tracked the precision of the memory that was recalled, such that activity in this region increased with how close participants were to the correct object location, orientation degree, and colour shade. Lastly, a third region, the precuneus, which has been associated with imagination and experiencing memories from a first person perspective, showed activity that was specific to the vividness with which participants experienced their memories.
Distinct brain regions support different aspects of remembering |
Teasing apart these properties of memory in the brain provides a novel approach that could be used to examine and possibly detect subtle early memory differences associated with neurological disorders that previous methods might not have been able to capture. For example, while it has been long known that damage to one of the areas mentioned above, the hippocampus, can cause severe memory problems, studies of patients with damage to more posterior (towards the back) areas of the brain have suggested that these regions are involved in more subtle aspects of memory, such as quality or detail. For instance, people who suffer strokes or brain tumours located towards the back of the brain are typically not amnesic, but their memories can lack detail and richness, and they may report low confidence in their memories, perhaps indicating a reduction in the precision or vividness of memory representations.
Similarly,
people with posterior cortical atrophy (a possible variant of Alzheimer’s disease associated with progressive
degeneration of posterior brain areas) can exhibit difficulties with visual processing earlier in the progression of the disease than memory deficits can
be detected, which
could affect the quality of patients’ memory representations even if the
ability to successfully remember the gist of an event remains. Using a
variation of the task described above might help to characterise and detect these
potential deficits earlier than traditional tests, providing earlier access to
treatment for such individuals. Moreover, combining the fMRI data with
newly developed brain stimulation techniques might
facilitate therapeutic interventions to target specific problems with memory
retrieval in these populations.
No comments:
New comments are not allowed.